Table 1. Observed and calculated intensities from both neutron and X-ray diffraction patterns of $\mathrm{Mn}_{2} \mathrm{Au}$ $z=\frac{1}{3}$, normalized to 100 for the most intense reflexion in each case.

	Neutron		X-ray	
Reflexion	$I_{\text {calc }}$	$I_{\text {obs }}$	$I_{\text {calc }}$	

Table 1 (cont.)

	Neutron		X-ray	
Reflexion	$I_{\text {calc }}$	$I_{\text {obs }}$	$I_{\text {cale }}$	$I_{\text {obs }}$
006	0	0	6	7
213	0	0	37	
204	19			

lian Atomic Energy Commission. One of us (P.W.) held a Commonwealth Postgraduate Scholarship.

References

Gaunt, P. \& Eden, A. (1965). Acta Cryst. 19, 476. Hall, E. O. \& Royan, J. (1959). Acta Cryst. 12, 607. Raub, E., Zwicker, U. \& Baur, H. (1953). Z. Metallk. 44, 312.

Acta Cryst. (1970). A26, 381

A note on the greatest value of the Bijvoet ratio. By A.K.Singh, Materials Science Division, National Aeronautical Laboratory, Bangalore-17, India

(Received 12 June 1969)

Abstract

The greatest value of the Bijvoet ratio $\Delta I / I$, has been studied as a function of I. It is shown that the maximum value of $\Delta I / I$ is 2 which occurs only when $I \leq I_{c} ; I_{c}=2 \delta\left(\Sigma f_{A}\right)^{2}$ if $\Sigma f_{A}\left\langle\Sigma f_{N}\right\rangle \sqrt{1+\delta} \boldsymbol{D}^{2} f_{A}$, otherwise $I_{c}=2 \delta^{2} /\left(1+\delta^{2}\right)\left(\Sigma f_{N}\right)^{2}\left(f_{N}\right.$ is the scattering factor of the normal scatterers and f_{A} the real part of scattering factor of the anomalous scatterers); $\delta=\Delta f^{\prime \prime} \mid f_{A}$. For $I>I_{c}$, the greatest value decreases approximately as the inverse of I and rapidly approaches zero as the maximum possible value of I is reached.

For comparison with theory of the observed anomalous dispersion data from a non-centrosymmetric structure, it is convenient to use a quantity $\Delta I / I=\left|\left[|F(H)|^{2}-|F(\bar{H})|^{2}\right]\right| /$ $\frac{1}{2}\left[|F(H)|^{2}+|F(\bar{H})|^{2}\right]$ (H and \bar{H} indicate indices $h k l$ and $\left.\bar{h} \vec{k} \bar{l}\right)$ as a measure of the anomalous dispersion effect exhibited by a crystal (Zachariasen, 1965). In the present communication the greatest value of $\Delta I / I$ as a function of I has been studied. This analysis is of interest because it makes possible the calculation of the upper limits of $\Delta I / I$ in a given structure. It must be emphasized that these limits are inherent in the function $\Delta I / I$. Though there is no assumption in the theory, its p_{1} actical application does require a knowledge of the scattering factors of the atoms in the crystal. Any uncertainty in the scattering factors will lead to some practical difficulties which are discussed of the end at this paper.

Maximum of $\Delta I / I$

Let us consider a noncentrosymmetric structure with n_{A} identical anomalous scatterers having a scattering factor of the form $\left(f_{0 A}+\Delta f_{A}^{\prime}+i \Delta f_{A}^{\prime \prime}\right)$ and n_{N} normal scatterers. It can be easily shown that

$$
\begin{align*}
\Delta I / I & =\left|\left[|F(H)|^{2}-|F(\bar{H})|^{2}\right]\right| / \frac{1}{2}\left[|F(H)|^{2}+|F(\bar{H})|^{2}\right] \\
& =4 k^{\prime} \delta \sin \varphi\left(1+\delta^{2}+k^{\prime 2}+2 k^{\prime} \cos \varphi\right), \tag{1}
\end{align*}
$$

where $k^{\prime}=\left|F_{N}(H)\right| /\left|F_{A}(H)\right| \cdot\left|F_{N}(H)\right|$ is the contribution to the structure factor from the normal scatterers while $\left|F_{A}(H)\right|$ is due to the real part of the scattering by the anomalous scatterers. $\delta=\Delta f_{A}^{\prime \prime} /\left(f_{0 A}+\Delta f_{A}^{\prime}\right) . \varphi$ is the angle between vectors $\mathrm{F}_{N}(H)$ and $\mathrm{F}_{A}(H)$ in the complex plane. For convenience $\left|F_{N}(H)\right|$ and $\left|F_{A}(H)\right|$ will be denoted by x and y. The limits of x and y are $0 \leq x \leq x_{\max }$ and $0 \leq y \leq y_{\max }$ where $x_{\max }=\sum_{1}^{\eta N} f_{i}$ and $y_{\max }=n_{A}\left(f_{A 0}+\Delta f_{A}^{\prime}\right)$. Further $0 \leq \varphi \leq \pi$.

By definition it is obvious that the maximum value of $(\Delta I / I)$ is 2 and that it occurs when $|F(\bar{H})|^{2}=0$. The following analysis provides additional information. Considering $(\Delta I / I)$ as a function of two variables k^{\prime} and φ [equation (1)], it can be easily shown that maximum occurs when $k^{\prime}=$ $\sqrt{1+\delta^{2}}$. Since δ is in general small, $k^{\prime} \simeq 1$ and $\varphi \simeq \pi$. For these values of k^{\prime} and φ it can be shown that

$$
|F(H)|^{2}=4 \delta^{2}\left|F_{A}(H)\right|^{2}
$$

and $|F(\bar{H})|^{2}=0$.
From this, it can be easily deduced that I_{c}, the maximum value of I for which $\Delta I / I=2$ can occur, is given by

$$
I_{c}=2 \delta^{2} y_{\max }^{2},
$$

if $y_{\text {max }}<x_{\text {max }}>\sqrt{1+} \delta^{2} y_{\text {max }}$, and

$$
I_{c}=2 \delta^{2} x_{\max }^{2} /\left(1+\delta^{2}\right)
$$

if $x_{\max } \leq y_{\max }$ or $y_{\text {max }}<x_{\text {max }} \leq \sqrt{ } 1+\delta^{2} y_{\text {max }}$.
It is seen that I_{c} is small compared with the average value of I.

Greatest value of $\Delta I / I$

For $I>I_{c},(\Delta I / I)$ does not possess a maximum and in this we shall investigate the greatest value taken by ($\Delta I / I$) when x, y and φ are varied continuously over the entire range of permissible values such that

$$
I=\frac{1}{2}\left[|F(H)|^{2}+|F(\bar{H})|^{2}\right]=\left(1+\delta^{2}\right) y^{2}+x^{2}+2 x y \cos \varphi
$$

is a chosen constant.
 The reason for considering this condition will become clear later. (1) can be rewritten as follows:

Fig. 1. Plot of $(\Delta I / I)_{G}$ as a function of q for L-tyrosine hydrochloride. Radiation, $\mathrm{Cu} K \alpha ; \sin \theta_{l} \lambda=0 \cdot 1$
where

$$
\begin{equation*}
\Delta I / I=4 \delta k^{\prime} \sin \varphi / q^{\prime 2} \tag{2}
\end{equation*}
$$

$$
q^{\prime}=I / y^{2}=1+\delta^{2}+k^{\prime 2}+2 k^{\prime} \cos \varphi .
$$

For a fixed value of $q^{\prime}, \Delta I / I$ attains a maximum value

$$
\begin{equation*}
(\Delta I / I)_{\max }=\frac{4 \delta}{q^{\prime 2}}\left[q^{\prime 2}-\delta^{2}\right]^{1 / 2} \tag{3}
\end{equation*}
$$

and occurs when

$$
\begin{equation*}
q^{\prime 2}+2=\left(1+\delta^{2}+k^{\prime 2}\right) \tag{4a}
\end{equation*}
$$

and

$$
\begin{equation*}
\cos \varphi=-1 / k^{\prime} \tag{4b}
\end{equation*}
$$

Next, considering the variation in q^{\prime}, it can be shown that the greatest value of $\Delta I / I$ for a given I occurs when $y=y_{\text {max }}$. Thus

$$
\begin{equation*}
\left(\frac{\Delta I}{I}\right)_{G}=\frac{4 \delta}{q^{2}}\left[q^{2}-\delta^{2}\right]^{1 / 2} \tag{5}
\end{equation*}
$$

where $q=I / y^{2}{ }_{\text {max }}$. Equation (5) is valid in the range $2 \delta^{2} \leq q^{2} \leq q_{m}^{2}$ where $\left.q_{m}^{2}=k_{m}^{2}+\delta^{2}-1\right), k_{m}=x_{\max } / y_{\max }$. From (4b) it is clear that $k>1$ and this is possible only if $y_{\max }<$ $x_{\text {max }}$, a condition assumed at the outset. $(\Delta I / I)_{G}=2$ occurs when $q^{2}=2 \delta^{2}$, i.e. $k^{2}=1+\delta^{2}$. This requires the condition $x_{\max }>\sqrt{\left(1+\delta^{2}\right)} y_{\text {max }}$.
For $q_{m}^{2} \leq q^{2} \leq q_{\text {max }}^{2}$, the greatest value is given by

$$
\begin{equation*}
\left(\frac{\Delta I}{I}\right)_{G}=\frac{4 \delta}{q^{2}} \mathrm{k}_{\mathrm{m}} \sin \varphi^{\prime} \tag{6a}
\end{equation*}
$$

where

$$
\begin{equation*}
\varphi^{\prime}=\cos ^{-1}\left[q^{2}-\left(1+\delta^{2}+k_{m}^{2}\right)\right] / 2 k_{m} \tag{6b}
\end{equation*}
$$

Similar arguments can be extended easily to the cases

$$
y_{\max }<x_{\max } \leq \sqrt{1+\delta^{2}} y_{\max } \text { and } x_{\max } \geq y_{\max }
$$

For illustration, numerical calculations have been made for L-tyrosine hydrochloride. Fig. 1 shows a plot of $(\Delta I / I)_{G}$ as a function of q. An isotropic temperature factor ($B=$ $3 \cdot 0 \AA^{2}$, Srinivasan, 1959) has been used for all the atoms for calculating $x_{\max }$ and $y_{\max }$. The scattering factors for various atoms have been taken from Cromer \& Waber (1965) and $\Delta f^{\prime}=-0.33$ and $\Delta f^{\prime \prime}=0.72$ for Cl for $\mathrm{Cu} K \alpha$ (Cromer, 1965). The quantities $x_{\text {max }}, y_{\max }, \delta$ and q depend on the Bragg angle. Fig. 1 has been drawn for $\sin \theta / \lambda=0 \cdot 1$.

For $q \leq q_{c}\left(q_{c}=0.065\right),(\Delta I / I)_{\max }=2$. For $q_{c} \leq q \leq q_{m}\left(q_{m}=\right.$ $5 \cdot 374),(\Delta I / I)_{G}$ drops steeply according to (5) and for $q_{m} \leq q \leq q_{\max }\left(q_{\max }=6 \cdot 466\right),(\Delta I / I)_{G}$ varies according to (6).

In order to see how close the observed values of ($4 / / I$) (Parthasarathy, 1962) are to the corresponding values of $(\Delta I / I)_{G}$, calculations have been done for a few reflexions and the results are shown in Table 1. It is seen that in certain cases $(\Delta I / I)_{\text {obs }}$ are close to $(\Delta I / I)_{G}$. In no case should $(\Delta I / I)_{\text {obs }}$ exceed $(\Delta I / I)_{G}$. However, in practice $(\Delta I / I)_{\text {obs }}>$ $(\Delta I / I)_{G}$ may be encountered due to errors in the measurement of intensities and to errors in scale and temperature factors. For reflexion $680,(\Delta I / I)_{\text {obs }}$ is slightly more than $(\Delta I / I)_{G}$, the difference being only 1.3 per cent. This can be explained on the basis of errors in measurement and the errors in scale and temperature factors.

Table 1. A comparison of $(\Delta I / I)_{\text {obs }}$ with corresponding $(\Delta I / I)_{G}$ for L-tyrosene hydrochloride

$h k l$	($4 I / I)_{\text {obs }}$	$(\Delta I / I){ }_{\mathrm{G}}$	hkl	$(\Delta I / I))_{\text {obs }}$	$(\Delta I / I){ }_{\mathrm{G}}$
020	$0 \cdot 169$	0.213	250	$0 \cdot 174$	0.533
220	0.178	$0 \cdot 620$	260	$0 \cdot 164$	$0 \cdot 395$
910	0.051	$0 \cdot 149$	464	$0 \cdot 238$	$0 \cdot 525$
420	$0 \cdot 116$	0.430	560	$0 \cdot 209$	$0 \cdot 656$
520	$0 \cdot 142$	0.541	660	$0 \cdot 123$	0.497
130	0.133	$0 \cdot 394$	960	$0 \cdot 250$	$0 \cdot 612$
530	$0 \cdot 184$	0.535	170	$0 \cdot 209$	0.916
930	0.339	0.455	270	$0 \cdot 243$	0.453
140	$0 \cdot 186$	$0 \cdot 295$	370	$0 \cdot 210$	$0 \cdot 259$
440	$0 \cdot 406$	$1 \cdot 200$	280	$0 \cdot 225$	0.538
1040	$0 \cdot 091$	0.266	680	$0 \cdot 353$	$0 \cdot 348$
150	$0 \cdot 128$	0.467	190	$0 \cdot 593$	0.937

The author wishes to thank Dr S.Ramaseshan for his keen interest in the work, Dr K.S. Viswanathan for reading the manuscript and Dr S.R. Valluri, the Director, National Aeronautical Laboratory, for his continued encouragement.

References

Cromer, D. T. (1965). Acta Cryst. 18, 17.
Cromer, D. T. \& Waber, J. T. (1965). Acta Cryst. 18, 104. Parthasarathy, R. (1962). Acta Cryst. 15, 41.
Srinivasan, R. (1959). Proc. Indian Acad. Sci. A 50 (1), 19. Zachariasen, W. H. (1965). Acta Cryst. 18, 714.

